
ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41058 274

Study of Mosix Software Tool for Cluster

Computing In Linux

Vinayak D. Shinde
1
, Priyanka Tarmale

2
, Shahista shaikh

3

H.O.D., Department of Computer Engineering, Shree L.R. Tiwari College of Engineering, Mumbai, India
1

Student of M.E, Department of computer Engineering, Shree L.R. Tiwari College of Engineering, Mumbai, India
2, 3

Abstract: Mosix conveniently supports a multi-user time-sharing environment for the execution of both sequential

and parallel task. it is designed to respond to variations in the resource usage among the nodes by migrating processes

from one node to another. Mosix use for load-balancing and to prevent memory depletion from any node .The core of

the Mosix technology is the potential of multiple servers (nodes) to work cooperatively. Mosix is a system for

sustaining cluster computing. It consists of kernel-level, adaptive resource sharing algorithms that are setup for

superiority, overhead-free scalability and ease-of-use of a scalable computing cluster of a single system. It is consider

as a leader in the field of high performance computing community.

Keywords: Cluster computing, Mosix Technology, scalability in Mosix.

1. INTRODUCTION

The mosix technology provide more than two nodes

work combine as they were part of single system. In order

to understand what Mosix does, let us compare a Shared

Memory (SMP) multicomputer and a CC. In an SMP

system, several processors share the memory. The main

advantages are increased processing volume and fast

communication between the processes (via the shared

memory). SMP’s can handle many simultaneously running

processes, with efficient resource allocation and sharing.

Mosix used to originate distributed operating system for

cluster computing. One of the advantage is that is low cost

device. Any time a process is started, finished, or changes

its computational profiler, the system adapt

instantaneously to the resulting execution environment.

Mosix is a set of algorithms that support adaptive resource

sharing in a scalable CC by dynamic process migration. It

can be viewed as a appliance that takes CC platforms one

step closer towards SMP environments. By being able to

allocate resources globally, and distribute the workload

dynamically and efficiently, it simplifies the use of CC’s

by taking users burden from managing the cluster-wide

resources. This is particularly evident in more users,

timesharing environments and in asymmetric CC' .In CC

systems the user is responsible to allocate the processes to

the nodes and to manage cluster resources. In many CC

systems, even though all the nodes run the same operating

system, coordination between the nodes is limited because

most of the operating system’s services are locally

confined to each node. It count the time required by CPU

to process.

2 WHAT IS MOSIX?

It is the tool for the operating system such as linux uses

adaptive resource sharing algorithm .it provides the uni

process to work in cooperation with other process to faster

the speed of execution. The resource sharing algorithms

are designed to respond on line variation in resource the

goal is to improve overall (cluster -wide) performance and

to create a convenient lot of different users, townhouse

environment for the execution of both sequential and

parallel applications. In resource sharing algorithm it

passes the process to one node or other node primitively

for load balancing .CC is

The standard run time environment of Mosix, in which the

cluster-wide resources are available to each node. Clusters

of X86 workstations, SMP’s that are connected by

standard LANs is the cureent implementation designed by

mosix [2].

2.1 THE TECHNOLOGY
The technology consist of two parts a set of algorithms for

adaptive resource sharing. And primitive process

migration .they are implemented at kernel level and they

can be easily demonstrated by application layer. The PPM

can migrate any process to any node at any time the

migration process is done by the resource sharing

algorithm. Super-user). Manual process migration can be

useful to implement a particular policy or to test different

scheduling algorithms. We observed that the super-user

has spare privileges regarding the PPM, such as defining

general policies as well as which nodes are available for

migration .Home node denoted the location where process

was created .this node denotes that the user had log in .

The PPM is the main tool for the resource management

algorithms. As long as the essentials for assets, such as the

CPU or main memory are below certain threshold, the

user’s processes are constricted to the UHN. When the

needs for resources exceed some threshold levels, then

some processes may be migrated to distinct nodes, to take

convenience of ready to use remote resources. this provide

efficient utilization of network wide resource . If during

the execution of the processes new resources become

available, then the resource sharing algorithms are

designed to use these new facilities by possible

reassignment of the processes among the nodes.

ISSN (Online) 2278-1021
ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 10, October 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.41058 275

Mosix don’t have mean control or master-slave

relationship between nodes: each node can operate as an

autonomous system, and it makes all its control decisions

independently. Algorithms for scalability ensure that the

system runs well on large configurations as it does on

small configurations [1].

 2.2 THE RESOURCE SHARING ALGORITHM

It based on the concept of load-balancing and the memory

ushering. It reduces load difference by migrating the

process from higher loaded to lesser loaded node. The

entire node uses the rescorce share algorithm and pairs of

node performed independently the reduction of load

difference. The algorithm is triggered in this case the when

a node starts excessive paging due to shortage of free

memory. In this case an attempt is made to migrate the

process to free memory space and override the load

balancing algorithm even if this migration would result in

uneven load balance [3].

2.3 PROCESS MIGRATION

Mosix support PPM and process continue to interact with

environment regarding the of its location .ppm can be

divided into two parts the user context – that can be

migrated, and the system context – that is UH- N

dependent, and not be allowed to migrated. That context

of user, called the remote, contains the program code,

stack, data, memory-maps and registers of the process.

The remote enclose the process when it is running in the

user level. The system context, called the representing,

contains declaration of the resources which the process is

attached to, and a kernel-stack for the execution of system

code on the side of the process. The deputy encloses the

process when it is running in the kernel. It holds the site

subordinate part of the system context of the process;

hence it must remain in the UHN of the process. The user-

context and the system context is well defined interface.

This is implemented at link layer with special

communication channel for interaction [1].

Local

Process

 Fig. local process and a migrated process

In the figure, the left process is a normal Linux process

while the right process is break in remote part migrated to

another node. The migration time has a fixed component,

for establishing a new process in the new remote site, and

a linear component, proportional to the number of memory

pages to be transferred. To decrease the migration om

high, only the page tables and the process' dirty pages are

transferred. In the execution of a process in Mosix,

location translucence is achieved by forwarding site

dependent system calls to the deputy at the UHN. System

calls are collectively form of interaction between the two

process contexts.

The system calls that are executed by the process are

interposes by the remote site’s link layer.

If the system call is site independent it is executed locally

the at the remote site. Otherwise, the system call is

forwarded to the deputy, which executes the system the

UHN. The deputy recompenses the result(s) back to the

remote site, which then proceed with the execution of the

user’s code. We note that this approach is robust, and is

not affected even by major moderations of the kernel. It

depends on almost no machine dependent features of the

kernel, and thus doesn’t obstruct to different architectures.

One draw bag of deputy approach is extra overhead in the

execution of system calls. In the UHN, all network links

(sockets) are created. Thus imposing communication

overhead if the processes migrate away from the UHN. To

overcome this problem we are elaborating “migratable

sockets”, which will move with the process, A direct link

is allowed in between migrated processes. Currently, this

overhead can significantly be reduced by initial

distribution of communicating processes to different

nodes. Should the system become imbalanced, the Mosix

algorithms will reallocate the processes to improve the

performance [3].

Statistics about a process' behaviour are collected

regularly, such as at every system call and every time the

process accesses user data. This information is used to

assess whether the process should be migrated from the

UHN. These statistics delay in time, to adjust for processes

that change their execution profiler. They are also cleared

completely on the “execve ()” system call, since the

process is likely to change its nature.

3. CONCLUSION

Mosix provide the new idea of scaling to cluster

computing with linux. High-performance, scalable CC

from commodity components can be easily constructed by

mosix. The one of the advantage over cc system is to

respond to many users for irregular resources requirement.

Other featured are symmetry, flexibility of its

configuration .parallel application can be executed by

mosix to assign and reassign the process to best possible

node The Mosix R&D project is expanding in various

directions. It shows good utilization of resource and good

speed up too in cc. The general concept of this

optimization is to migrate more resources with the process,

to reduce remote access overhead.

REFERENCES

[1] Y. Amir, B. Averbuch, A. Barak, R.S. Borgstrom, and A. Keren. An
Opportunity Cost Approach for Job Assignment and Reassignment

in a Scalable Computing Cluster. In Proc. PDCS ' 98, Oct. 1998.

[2] A. Barak, A. Braverman, I. Gilderman, and O. Laden. Performance of
PVM with the MOSIX Preemptive Process Migration. In Proc.

Seventh Israeli Conf. on Computer Systems and Software

Engineering, pages 38–45, June 1996.
[3] A. Barak, S. Guday, and R.G. Wheeler. The MOSIX Distributed

Operating System, Load Balancing for UNIX. In Lecture Notes in

Computer Science, Vol. 672. Springer-Verlag, 1993.
[4] Platform Computing Corp. LSF Suite 3.2.1998.

User level

deputy

Kernel

User level

kernel

remote

